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Abstract

Rancho La Brea (California, USA) is the most emblematic Quaternary fossiliferous locality

in the world, since both the high number and diversity of the specimens recovered and their

excellent preservational quality. In the last decades, paleobiological and paleoecological

knowledge of the different groups of mammals from this site has increased notably; how-

ever, some aspects have not yet been inquired or there is little information. In this work we

provide information on one of the most abundant mammals of this site, the equid Equus

occidentalis, based on the study, from osteohistological and histotaphonomic perspectives,

of thin sections of different limb bones. On the one hand, from an osteohistological view-

point, we observe that the distribution and characterization of bone tissues in the different

skeletal elements are, in general lines, similar to that mentioned for other extant and extinct

equids. Cyclical growth marks allowed us to propose preliminary skeletochronological inter-

pretations. On the other hand, from a taphonomic viewpoint, we note that all the samples

reflect an excellent preservation of the bone microstructure, slightly altered by different pre-

and post-burial processes. The variations recorded evidence different taphonomic history

and preservation conditions among pits. This is the first study including fossil material from

Rancho La Brea exclusively based on the analysis of the bone microstructure features.
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Introduction

Rancho La Brea (Los Angeles, California, USA) comprises several asphalt seeps corresponding

to emanations of the Salt Lake Oilfield. According to the values of obtained 14C dating, the age

of the fossils from these deposits ranges from more than 50,000 to less than 10,000 years (e.g.,

[1–4]). The high number of specimens (>3.5 million specimens representing >600 species)

recovered, including vertebrates (mammals, birds, reptiles, amphibians, and fishes), inverte-

brates, plants, and coprolites, and their excellent preservational quality, make Rancho La Brea

site a true lagerstätte and offer unsurpassed insights into a past ecosystem of the last ice age

(e.g., [3, 5–8]). These features make Rancho La Brea one of the most emblematic Quaternary

fossiliferous locality in the world.

It is known that natural asphalt can be extremely sticky and that seeps of only a few centi-

meters in depth suffice to immobilize large domestic animals such as cows and horses [9]. It

was proposed and widely accepted that, during the late Pleistocene, the open asphalt seeps of

Rancho La Brea site would have acted as episodic traps for thousands of vertebrates (e.g., [5, 8–

11]). In this unusual taphonomic context, the fossil record of vertebrates consists of columns

of jumbled bone remains mostly incomplete and disarticulated, mixed together with little

stratigraphic order [2, 12].

Despite the importance of the Rancho La Brea site, well-known as a source for bitumen by

Native Americans for thousands of years, also known by the European settlers and shown as

an exceptional fossiliferous site already in 1875, systematic excavations did not take place until

the 20th century and no dates were made until the 21st century [4]. In the case of vertebrates,

most scientific studies are focused mainly on taxonomic, osteological, paleopathological, and

isotopic analyses. However, research on the taphonomy of the assemblages are scarce (e.g., [2,

5, 13]) and limited to only a few pits (see [14]), so that several questions to understand how the

site formed remain unresolved and other possible scenarios should not be ruled out.

Even though morphological analysis of fossil bones has constituted the principal source of

information in vertebrate paleobiology (e.g., [15]) and paleoecology (e.g., [16, 17]), other

approaches can provide complementary data. Osteohistology is an important tool to evaluate

biological issues of extinct taxa (e.g., [18–24]); however, in the case of mammals, there are still

a large number of taxa that have not been addressed in detail. Particularly for equids, in the

last decades the analysis of bone microstructure (e.g., type of matrix, degree of vascularization,

presence of growth marks) was applied to infer different life history traits of the individuals,

such as longevity, body size, growth rates, sexual dimorphism, maturity age, and soft tissue

reconstruction, among others, of both extant and extinct representatives (e.g., [25–28]). Tak-

ing into account that diverse post-mortem events, both before and after the burial (e.g., death

history, decomposition trajectory, depositing environment itself), can produce modifications

that directly affect the original microstructural features, it is also important to evaluate the

preservation features of the bone histology (e.g., [29–32]); this is the basis of what has been re-

named as histotaphonomy [33].

We study here, from different perspectives, thin sections of Equus occidentalis Leidy [34]

(Mammalia, Equidae) limb bones (humerus, radius, femur, metacarpal, and metatarsal) recov-

ered from late Pleistocene tar pits of Rancho La Brea site. The selection of this species is based

on the fact that it represents one of the most abundant herbivores on Rancho La Brea site [35,

36] and there are several works on other species of horses, both extant and extinct, that allow

us to propose a detailed comparative framework. We analyze the osteohistological features to

establish: 1) growth patterns; 2) ontogenetic stages; and 3) estimated death ages of the individ-

uals. Also, we evaluate different post-mortem processes that modified the original bone micro-

structure to reconstruct the possible taphonomic histories of the remains and the
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environmental context of preservation. This paper is a preliminary multiproxy approach on

different living and post-mortem events that yields general information on the paleobiology

and paleoecology of this species and on the formation of the fossil-bearing levels.

Material and methods

Specimens studied

All the specimens of E. occidentalis here studied are hosted in La Brea Tar Pits and Museum,

George C. Page Museum collection, a branch of the Natural History Museum of Los Angeles

(Los Angeles, California, USA), under the acronyms LACMHC and Z. Taking into account

that the proposed analysis involves a destructive methodology, for this preliminary study we

could make thin sections only of two humeri (LACMHC 25297 and LACMHC 25346), one

radius (LACMHC 6154), one femur (LACMHC 27421), two III metatarsals (Mt-III; Z 4657

and Z 4697), and two III metacarpals (Mc-III; LACMHC 26263 and LACMHC 26267)

(Table 1). All necessary permits were obtained for the described study, which complied with

all relevant regulations. The permit (NHMLAC Outgoing Loan Number: 17221) to make these

analyses was awarded by the Natural History Museum to one of us (J.L.P).

Specimens come from different pits, including 60, 61, 67, and 77. There is no data on the

pit of radius LACMHC 6154. All the specimens were broken and incomplete. Based on the

data of the fossiliferous levels (grid and depth; see Table 1), it cannot be confirmed that speci-

mens coming from the same pit (i.e., 67 and 77) correspond to a single individual. Pits

involved spanning the latest Pleistocene, from ~35 ka to 11.5 ka ([3]; see also [37]). It is impor-

tant to note that, in several cases, fossil bones from a single pit show important age variations

(see [37]). In this sense, a recurrent problem in this site is the assignment of average ages for

undated fossils of a recovered from a same pit (“pit averaging” see [8, 37]).

Specimens were photographed before cutting. They were transversely cut, obtaining a sam-

ple of ~3 cm thick. The cuts were made in different sectors according to the preserved portion

of each specimen (Table 1, S1 Fig); we considered this aspect when making comparisons with

other taxa. We performed a complete mold and cast of the cut portions to avoid the loss of ana-

tomical information for future studies (see [38]). The sampling was made by Gary Takeuchi

(Collections Manager at La Brea Tar Pits and Museum), following the protocol established in

Lamm [39].

Preparation of histological thin sections

The bone microstructure of the different elements is evaluated based on transverse thin sec-

tions. The sections were made at the Laboratorio de Petrotomı́a of the INGEOSUR, Departa-

mento de Geologı́a, Universidad Nacional del Sur-CONICET (Bahı́a Blanca, Argentina). All

Table 1. List of the Equus occidentalis specimens used in this study, general information of the materials, and provenance data.

Specimen Element Preserved portion Thin section Provenance Depth (cm)

LACMHC 25297 Left humerus Distal Distal level Tar pit 61 259.08–304.8

LACMHC 25346 Right humerus Distal Distal level Tar pit 77 274.32–335.28

LACMHC 6154 Left radius Distal Distal level - -

LACMHC 27421 Left femur Mid-shaft and distal Mid-shaft level Tar pit 60 (grid D12) 396.24–426.72

LACMHC 26267 Right Mc-III Proximal Proximal level Tar pit 77 (grid F11) 365.76–457.2

LACMHC 26263 Right Mc-III Mid-shaft and distal Mid-shaft level Tar pit 67 (grid H11) 518.16–579.12

Z 4697 Left Mt-III Proximal and mid-shaft Mid-shaft level Tar pit 77 (grid E9) 320.04–381

Z 4657 Right Mt-III Proximal and mid-shaft Mid-shaft level Tar pit 67 -

https://doi.org/10.1371/journal.pone.0261915.t001
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the specimens are broken; the medullary cavity of LACMHC 25346, LACMHC 26267, Z 4657,

LACMHC 27421, and LACMHC 25297, is completely filled with sediments impregnated with

asphalt.

We had different problems during the elaboration of the thin section following standard

techniques (e.g., [40]), because hydrocarbons act as a release agent, which causes the resins

commonly used for gluing or embedding not to adhere to the fossil remains (see [41]). To

avoid this setback, in this case, the chips (= blocks) were made embedding the samples in a

large volume of low-viscosity epoxy resin (DICAST 867) and leaving edges higher than 10 mm

around the sample. The large volume generates a higher shrinkage, preventing the separation

of the chip components (resin/fossil), while the low viscosity allows a higher penetration in the

bone tissues. Chips were sectioned with a diamond saw (MK-303 professional), obtaining sam-

ples of 1 cm thick, and then ground and polished with silicon carbide (from #320 to #1200

grit) in a grinder machine. Before the mounting, excess resin was removed, in order to reduce

the contact surface between resin and glass slide and thus prevent posterior breakages by resin

shrinkage. Chips were mounted on the glass slides using UV acrylic resin Bohle 660 under an

ultraviolet light lamp, since (unlike epoxy resins) it does not require heat application, opti-

mizes adhesion, and reduces the curing time, which allows cutting and polishing quickly after

mounting. Sections of 200 mm thick were obtained using a diamond saw. Finally, sections

were ground and polished using a 380 rpm grinding disc and on glass, with different silicon

carbide (#320, #600, #1000, and #1200 grit), to a thickness of 100±10 μm. During polishing, it

was necessary to reduce the cleaning time with ultrasound to avoid peeling and losing portions

of the sample.

Osteohistological analysis

Analysis and high-resolution imaging of the transverse thin sections have been performed

under a Nikon Eclipse E400 POL petrographic microscope, with polarized light, a 1/4λ filter,

and an incorporated digital camera, which belong to the Departamento de Geologı́a, Universi-

dad Nacional del Sur (Bahı́a Blanca, Argentina). Measurements of the samples (see Table 2)

were obtained by the use of Image J1 [42].

To avoid losing material during the preparation of thin sections, considering the difficulties

of the alternative methodology used here (see above), some thin sections were thicker than

standard paleohistological sections, obscuring details as the osteocyte lacunae shape. The

Table 2. List of Equus occidentalis limb bone samples analyzed and measurements calculated on the thin sections.

Specimen Skeletal element Bone área (mm2) Medullary area (mm2) Bone diameter (mm) Compact

cortex

thickness (mm)

LAG EFS

anterior-posterior transversal Mi Ma

LACMHC 25346 Humerus 1715.56 418.18 51.99 44.34 8.19 16.48 1 Absent

LACMHC 25297 Humerus 1658.97 376.98 50.39 44.18 8.18 15.20 2 Absent

LACMHC 6154 Radius 1196.52 220.91 29.64 93.96 8.28 14.88 0 Absent

LACMHC 27421 Femur 2029.93 1094.47 66.39 47.42 2.11 24.16 0 Absent

LACMHC 26263 Mc-III 901.47 114.31 28.95 38.91 7.12 13.70 3 Present

LACMHC 26267 MC-III 1009.73 168.39 29.92 41.15 6.22 12.59 3 Absent

Z 4697 Mt-III 1117.77 162.47 34.89 41.04 8.46 13.31 2 Present

Z 4657 Mt-III 1133.19 186.62 34.89 41.04 7.75 14.19 2 Present

Abbreviations: EFS. external fundamental system. LAG. line of arrested growth. Ma. maximum value. Mi. minimum value.

https://doi.org/10.1371/journal.pone.0261915.t002
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intrinsic fiber organization based on the optical properties of the bone cannot be assessed in

these sections. For this reason, in some instances, the nature of the extracellular matrix is indi-

rectly inferred based on parameters as the vascular pattern. The histological description of

bone microstructure follows Francillon-Vieillot et al. [19] and de Ricqlès et al. [43]. For histo-

logical characterization, we consider the following parameters: presence and distribution of

primary and secondary tissues, vascular pattern, form, density and order of osteocytes lacunae,

presence and distribution of Sharpey’s fibers, number and distribution of cyclical growth

marks (lines of arrested growth -LAGs- and annuli).

A skeletochronological analyses (age estimation from cyclical growth marks counting) was

performed considering the number of LAGs. Assuming that, at least in mammals, LAGs are

deposited annually, independently of metabolic rate and climatic background (see [44, 45]),

we estimate the age at the moment of death of each specimen based on the total number of

LAGs present in the primary cortical bone. We count LAGs that can be traced along the whole

section, although, in some cases, it is difficult because they are partially erased by secondary

osteons [46].

Microstructural post-mortem changes

A macroscopic analysis was performed on each specimen before cutting to identify tapho-

nomic surface modifications caused by physical processes, including weathering, abrasion,

and breakage. Weathering was evaluated following the six stages scale proposed by Behrens-

meyer [47], which ranges from 0 (absent weathering) to 5 (extreme weathering). Abrasion was

evaluated using the three stages defined by Alcalá [48]: intact, rounded, and polished remains.

Breakage was evaluated considering if the specimens showed biostratinomic (produced in rela-

tively fresh or dry bone) or fossil-diagenetic (produced in recrystallized or permineralized

bone) fractures [49].

Chips and thin sections were examined and analyzed, from a taphonomic viewpoint, using

a light binocular microscopy Nikon SMZ-1 (magnification × 10–60) and SEM imaging to

identify modifications of the bone microstructure. Histological destruction of bone due micro-

bial attack (e.g., bacteria, fungi) was categorized and described according to the Oxford Histol-

ogy Index (OHI) proposed by Hedges et al. [29], ranging from stage 0 (with no original

histological features identifiable other than Haversian canals) to stage 5 (with less than 5% of

the microstructure affected). The different types of microscopic focal destruction (MFD) are

classified based on their size, shape, and the presence of a hypermineralized ring [50, 51]. The

type of microbial alteration was determined using the descriptions provided by Hackett [50]

divided in: 1) Wedl MFD with irregular tunnels, branched or not, caused by fungi, and 2) the

non-Wedl MFD with linear longitudinal, budded and lamellate tunneling caused by bacteria.

A FEI QUANTA 200 and FEI Inspect (Low Vaccum) SEM microscope equipped with an X-

ray energy dispersive spectrometer (EDS) was used at the Museo Nacional de Ciencias Natur-

ales (MNCN-CSIC; Madrid, Spain). Analyses were performed in secondary electron emission

(SE-SEM) and backscattered electron (BSE-SEM) modes.

The microcracks associated with secondary osteons [52–54] were distinguished according

to their position and orientation in the following types: (1) central radial microcracks spread-

ing from the Haversian canal outwards; (2) circumferential cracks around the outer margin of

the osteons separating them partially from adjacent structures; (3) peripheral radial cracks

spreading from the cement line inwards; and (4) radial microcracks cutting through the

cement lines of secondary osteons across the cement lines connecting with adjacent osteons.

The fissures larger than cracks, either influenced or non-influenced by the histological struc-

tures of bones were also described.
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We evaluated the presence of fissures and the tissues affected by them. Finally, the mineral

infilling of the microstructural cavities (e.g., canaliculi, osteocyte lacunae, and Haversian and

Volkmann canals), medullary cavity, and microcracks and fissures, was determined.

Results

Osteohistology

Transverse thin sections of all elements show a compact cortex surrounding a medullary

region (Fig 1). The medullary cavity of all the specimens is empty; however, cancellous bone

associated with some sectors of the perimedullary region of Mt-III, humeri, and femur is

observed. Cancellous bone is mostly broken in humeri and Mt-III. Conversely, bony trabecu-

lae in the femora are mostly intact. The trabeculae are constituted by several generations of

secondarily deposited lamellar bone tissue and remains of secondary osteons. In all elements,

an internal circumferential layer (ICL) of lamellar bone is recognized almost completely sur-

rounding the medullary cavity (except in those areas in which the perimedullary tissue is

formed by cancellous bone). The compact cortex exhibits a stratified pattern, in which two

(i.e., humeri, femur, and radius) or four (i.e., Mc-III and Mt-III) successive layers separated

from each other by reversal lines can be distinguished (Fig 1). Remodeling of primary bone tis-

sue is evidenced by the presence of secondary osteons and resorption cavities (Fig 1).

Fig 1. Chips and schematic cross-sections of Equus occidentalis skeletal elements showing the tissues variability. For each element analyzed, the image of the chip is

shown (left) and a diagram showing the variability of the bone tissues observed (right). Note that EFS is not to scale. Abbreviations: EFS. external fundamental system.

ICL. inner circumferential lamellae. A. anterior region. P. posterior region.

https://doi.org/10.1371/journal.pone.0261915.g001
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Femur. It shows a roughly triangular shape in cross-section. The ICL is thin (~0.05–0.70

mm) and surrounds the medullary cavity in the anterior and posterior regions (Fig 2A). It is

traversed by radially oriented canals. Some secondary osteons are scattered in this layer. The

primary bone is formed by fibrolamellar bone tissue, with primary osteons arranged into suc-

cessive circumferential rows limited by thin concentric layers of woven-fibred bone tissue.

Canals of the primary osteons anastomose with some circumferentially oriented canals and

some radial canals, resulting in a laminar/plexiform vascular pattern (Fig 2B). The postero-lat-

eral region is completely remodeled, showing dense Haversian bone with several generations

of secondary osteons (Figs 1 and 2A). The density of secondary osteons decreases progressively

from this region towards medial and anterior regions, where only isolated secondary osteons

are observed (Figs 1 and 2B). Also, resorption cavities are observed in the perimedullary (pos-

tero-lateral) region, which are partially filled with lamellar tissue. No growth marks are identi-

fied in the compact cortex (Table 2).

Humerus. It shows a roughly circular shape in cross-section. A thin ICL of variable thick-

ness (~0.20–2.05 mm) is observed in both specimens. This layer is formed by lamellar bone tis-

sue deposited during different generations, as clearly indicated by the presence of resorption

lines (Fig 3A). The external cortex is constituted by fibrolamellar bone tissue, with primary

osteons arranged into successive circumferential rows limited by thin concentric layers of

woven-fibred bone tissue. It is observed that the longitudinal canals of the primary osteons

anastomose with circumferentially oriented canals and some radials canals (Fig 3A and 3B).

Remodeling affects the entire compact cortex with different intensity according to the region,

which is evidenced by the presence of secondary osteons and resorption cavities partially filled

with lamellar tissue. In the medial and lateral regions, the bone is almost completely remodeled

Fig 2. Femoral bone histology. (A). LACMHC 27421. ICL showing lamellar bone. Note the high remodeling of the

fibrolamellar bone with some secondary osteons. (B). Detail of fibrolamellar bone showing primary osteons in circular rows,

circumferentially oriented canals, and some secondary osteons. Abbreviations: cc. circumferentially oriented canals. FLB.

fibrolamellar bone. LB. lamellar bone. mc. medullary cavity. PO. primary osteons. SO. secondary osteons. Images obtained

under normal polarized light.

https://doi.org/10.1371/journal.pone.0261915.g002
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(Fig 1). In the lateral region, particularly in the outermost portion of the compact cortex, a

high density of secondary osteons is registered. In the medial region secondary osteons are

present in the entire cortex. Also, there are large resorption cavities in the lateral region, filled

with lamellar tissue, which connect with the medullary cavity. The density of secondary

osteons is lower in the anterior and posterior regions (Figs 1 and 3B). Sharpey’s fibers bundles

oriented oblique to the bone surface are recorded in the outer portion of this cortex. LAGs are

present in the external layer of both humeri (Table 2 and Fig 3B).

Radius. It shows an oval shape in cross-section. The ICL is thin (~0.05–0.2 mm), avascu-

lar, and surrounds the medullary cavity in the lateral and posterior regions. The cortex is

formed by fibrolamellar bone tissue, with primary osteons arranged into circumferential rows

limited by thin concentric layers; the first three of these concentric layers look like bright lines

under normal light. The vascular pattern varies according to the region. In the innermost por-

tion, it is observed that the longitudinal canals of the primary osteons anastomose with some

circumferentially oriented canals and some radial canals, resulting in a plexiform vascular pat-

tern (Fig 4A). The outermost portion displays longitudinally oriented simple canals, filled by

some lamellae, reflecting the incipient formation of primary osteons (Fig 4A). The remodeling

is mainly restricted to the innermost portion of the posterior region and the inner and middle

portion of the antero-lateral region. Some isolated secondary osteons and resorption cavities

are distributed in the ICL and the outermost portion of the compact cortex (Figs 1 and 4B).

No growth marks are identified in the compact cortex (see Table 2).

Metatarsal and metacarpal. The shape in cross-section is oval in Mc-III, flattened in the

posterior region, and roughly circular in Mt-III. The cortex of these elements is formed by

four distinct layers, being the ICL the innermost of them (Fig 5A). The ICL has an irregular

Fig 3. Humeral bone histology. (A). LACMHC 25297. ICL showing different generations of lamellar bone separated from

each other by resorption line (black arrows). The image also shows a specific area of the fibrolamellar bone with remodeling,

which is represented by multiple secondary osteons. Image obtained under cross-polarized light. (B). LACMHC 25346. Detail

of the fibrolamellar bone showing remodeling represented by several generations of secondary osteons and resorption

cavities. Two LAGs (black triangle) are identified in this cortex. Image obtained under normal polarized light. Abbreviations:

FLB. fibrolamellar bone. LB. lamellar bone. mc. medullary cavity. RC. resorption cavities. SO. secondary osteons.

https://doi.org/10.1371/journal.pone.0261915.g003
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thickness (~0.04–0.45 mm in Mt-III; ~0.07–0.62 in Mc-III) in all specimens. The ICL is fol-

lowed by a prominent layer constituted by parallel fibered bone tissue, with longitudinal canals

in the anterior and posterior regions and with longitudinal and circumferentially oriented

canals in the lateral and medial regions (Figs 5B and 6A). Some secondary osteons are

observed in this layer. The following layer is formed by compacted coarse cancellous bone, in

which large cavities filled with lamellar tissue give a convoluted aspect to the bone (Figs 5A

and 6A). This layer is highly remodeled, showing several generations of secondary osteons and

resorption cavities, which partially obscured the convoluted aspect. The next layer is formed

by fibrolamellar bone tissue with primary osteons arranged into successive circumferential

rows limited by thin concentric layers of woven-fibred bone. It is observed that the longitudi-

nal canals of the primary osteons anastomose with some circumferentially oriented canals and

some radial canals (Figs 5C, 6B and 6C). Remodeling in this layer, represented by isolated sec-

ondary osteons, is mainly observed from the inner to the outer portion of the posterior region.

A variable number of LAGs is observed in the external layer of both elements (see Table 2 and

Figs 5C, 6B and 6C). Also, in both Mt-III and one Mc-III an external layer constituted by avas-

cular lamellar/parallel fibered bone tissue it is possible to observe, which corresponds to the

external fundamental system (EFS) (Figs 5C and 6B). In both Mt-III, the EFS includes Shar-

pey’s fibers bundles oriented obliquely to the bone surface.

Histotaphonomy

The macroscopic examination (Table 3, S2 Fig) revealed that most of the studied fossil bones

do not have cracking or flaking on their surfaces, which is consistent with weathering stage 0,

Fig 4. Radial bone histology. (A). LACMHC 6154. Fibrolamellar bone showing an inner portion represented by primary

osteons anastomose with circumferentially oriented canals and some radial canals (plexiform pattern), and an external

portion reflecting an incipient formation of primary osteons. (B). Detail of the inner portion showing the fibrolamellar bone

with evidence of remodeling represented by some isolated secondary osteons and resorption cavities. Abbreviations: cc.

circumferentially oriented canals. PO. primary osteons. POf. primary osteons in formation. RC. resorption cavities. rc. radial

canals. SO. secondary osteons. Images obtained under normal polarized light.

https://doi.org/10.1371/journal.pone.0261915.g004
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except for Z 4697 and LACMHC 25297 that show stage 1. No abrasion evidence (stage 0) is

present in the sampled specimens. Fossils exhibit both fresh biostratinomic and fossil-diage-

netic fractures. All specimens are characterized by presenting the typical black color of the ver-

tebrate remains from this site, which is related to the impregnation with asphalt.

Fig 5. III Metacarpal bone histology. (A). LACMHC 26267. 381 ICL showing lamellar bone and CCCB highly remodeled. Image obtained under

normal polarized light. (B). LACMHC 26263. Detail of the parallel fibered bone, showing longitudinal and circumferentially oriented canals. Image

obtained under cross-polarized light. (C). LACMHC 26263. Fibrolamellar bone shows evidence of remodeling, represented by some secondary osteons

and resorption cavities. Three LAGs (white triangle) are identifiable in this layer. Note that the most external layer is represented by parallel fibered bone

(EFS). Image obtained under cross-polarized light. Abbreviations: CCCB. compact coarse cancellous bone. EFS. external fundamental system. FLB.

fibrolamellar bone. LB. lamellar bone. mc. medullary cavity. PFB. parallel fibered bone. PO. primary osteons. RC. resorption cavities. SO. secondary

osteons.

https://doi.org/10.1371/journal.pone.0261915.g005

Fig 6. III Metatarsal bone histology. (A). Z 4697. The two observed layers include parallel fibered bone, with longitudinal and circumferentially

oriented canals, and CCCB highly remodeled with several generations of secondary osteons. (B). Z 4697. Fibrolamellar bone remodeled, including some

secondary osteons. One LAG (black triangle) is identifiable in this layer. Note that the most external layer is represented by parallel fibered bone (EFS).

(C). Z 4697. Detail of the external cortex showing a CCCB layer following by fibrolamellar bone layer with evidence of remodeling, represented by some

secondary osteons. One LAG (black triangle) is identifiable in this layer. Abbreviations: CCCB. compact coarse cancellous bone. EFS. external

fundamental system. FLB. fibrolamellar bone. LB. lamellar bone. mc. medullary cavity. PFB. parallel fibered bone. PO. primary osteons. SO. secondary

osteons. Images obtained under normal polarized light.

https://doi.org/10.1371/journal.pone.0261915.g006
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Histotaphonomic features (Table 3) include alterations observed under light microscope,

petrographic microscope, and scanning electron microscope. Specimens show a very well pres-

ervation of the bone microstructure, only affected by minor changes. The identified modifica-

tions comprise enlargement of canaliculi, microtunelling, radial and circumferential

microcracks on secondary osteons, fissures, and microstructural cavities infilling. It is worth

noting that none of the examined samples show evidence of bacterial attack altering the origi-

nal characteristics of the bone tissue. All samples can be assigned to the stage 5 of the OHI pro-

posed by Hedges et al. [29]. The analysis reflects some taphonomic differences among the

specimens of the different pits.

Enlarged canaliculi are present in some primary osteons of the external layer in LACMHC

6154, while in Z 4697 (Fig 7A) and Z 4657 they affect some secondary osteons of the two most

external layers. In all cases, these canaliculi are apparently empty.

Microtunelling affects three specimens. Zig-zag microtunnels, with different orientations,

limited to a small sector of the external layer and affecting primary and secondary osteons are

present in LACMHC 6154 (Fig 7B). In LACMHC 26263 there are branched and unbranched

straight microtunnels, mainly parallel to each other, which appear limited to a small sector of

the external layer (Fig 7C). All of them are empty, with unaltered borders, and apparently do

not affect nearby osteons. The affected area shows a slightly crumbly texture (Fig 7C). In Z

4657, unbranched straight microtunnels, mainly parallel to each other and limited to a small

sector of the external layer, are observed. All of them are empty, with unaltered borders, and

apparently do not affect nearby osteons.

Microcracking related to the bone histology affects most of the specimens, except

LACMHC 26267. In LACMHC 25346, LACMHC 6154, and Z 4697, central radial microcracks

Table 3. Macro- and microtaphonomic features of the different Equus occidentalis specimens.

LACMHC

25346

(humerus)

LACMHC

25297

(humerus)

LACMHC

6154

(radius)

LACMHC

27421

(femur)

LACMHC

26263 (Mc-III)

LACMHC

26267 (Mc-

III)

Z 4697 (Mt-

III)

Z 4657

(Mt-III)

Macrotaphonomic

features

Weathering Stage 0 Stage 1 Stage 0 Stage 0 Stage 0 Stage 0 Stage 1 Stage 0

Abrasion Intact Intact Intact Intact Intact Intact Intact Intact

Type of fracture Fossil-

diagenetic

Biostratinomic Fossil-

diagenetic

Fossil-

diagenetic

Biostratinomic Fossil-

diagenetic

Biostratinomic Fossil-

diagenetic

Microtaphonomic

features

OHI 5 5 5 5 5 5 5 5

Enlarged

canaliculi

- - X - - - X X

Microtunneling - - X - X - - X

Central radial

microcracks

X - X - X - X -

Circumferential

microcracks

X - X - X - X -

Peripheral radial

microcracks

- - - - - - - -

Radial

microcracks

- X - X - - - X

Circumferential

fissures

ICL ICL and LAGs - - LAGs ICL ICL and LAGs -

Fissures X X X X X X X X

Medullary cavity

infilling

X X X X X X X X

Microstructural

cavities infilling

X X X X X X X X

https://doi.org/10.1371/journal.pone.0261915.t003
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Fig 7. Histotaphonomic features of Equus occidentalis skeletal elements. A. Mt-III Z 4697, primary osteons of the external layer showing enlarged

canaliculi. B. Radius LACMHC 6154, zig zag microtunnels in the external layer, affecting primary and secondary osteons. C. Mc-III LACMHC 26263,

branched and unbranched straight microtunnels distributed in the external layer. Note the development of a slightly crumbly texture. D. Mt-III Z 4697,
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are present in secondary osteons, radiating from the walls of the Haversian canals to the

peripheral zone of the osteon (Fig 7D). In LACMHC 6154 and Z 4697, these microcracks are

linked to circumferential microcracks located in the peripheral portion, following the mineral-

ized cement line, which generate the separation between adjacent osteons (Fig 7D). Peripheral

microcracks spreading inwards from the borders of a secondary osteon are absent in these

specimens. Radial microcracks located in the borders of secondary osteons, forming a bridge

with the adjacent ones, are present in LACMHC 25297, LACMHC 27421, LACMHC 26263,

and Z 4657 (Fig 7E). In most specimens, different types of microcracks are empty, except in

LACMHC 25297, in which they seem to be partially filled with different mineral components.

In the specimens LACMHC 25346, LACMHC 26267, LACMHC 26263, LACMHC 25297,

and Z 4697, there are circumferential fissures larger than the microcracks described above,

also linked to the bone histology. They are following resorption lines of the ICL (Fig 7F) and

LAGs of the external layer (Fig 7G). These types of fissures are partially filled with asphalt-

impregnated clastic material and different mineral components.

Other fissures unrelated with the bone histology are present in all specimens, partially or

completely cutting the compact cortex and without any preferential direction. Most fissures

are filled with asphalt-impregnated clastic material (Fig 7H). Several of them cut secondary

osteons with microcracks. In LACMHC 25346 and LACMHC 25297, some of them might be

internal prolongations of the weathering splitting.

A “craquelure texture” of the bone tissue is present in different sectors of the sample, both

in LACMHC 6154 and Z 4697 (Fig 7I and 7J). This feature seems to be associated to the areas

with more development of enlarged canaliculi and central radial and circumferential

microcracks.

A feature shared by all the specimens is the presence of asphalt-impregnated material infill-

ing, partially or completely, the medullary and microstructural cavities (Fig 7K and 7L). Clastic

material and different mineral components (mainly carbonates, quartz, feldespars, and opaque

minerals) constitute the filling. In most cases, microstructural cavities are completely filled.

Discussion

Life history traits, physiology, and growth pattern

We studied eight samples corresponding to limb bones (i.e., humerus, radius, femur, Mt-III,

and Mc-III), which were recovered from several pits (and bearing-levels with variable chronol-

ogy; see above, Table 1) and assigned to different individuals (Tables 1 and 2). Considering

that all materials used were incomplete, the sector where the thin sections were made varied

according to the preserved portion of each specimen. Finally, some thin sections were thicker

than standard paleohistological sections due to preparation difficulties by the presence of

asphalt in both the outer surface and microstructural cavities. However, beyond these situa-

tions, a first detailed approach of the E. occidentalis osteohistology could be carried out in this

work.

Observations performed in this study reflected that all skeletal elements are fundamentally

characterized by the presence of fibrolamellar bone tissue, although with differences in the

secondary osteons showing central radial microcracks associated to circumferential microcracks located in the peripheral portion. E. Humerus

LACMCH 25297, secondary osteons showing radial microcracks located in their borders, forming bridges with the adjacent osteons. F. Humerus

LACMCH 25346, circumferential fissures following resorption lines. G. Mt-III Z 4697, circumferential fissures following LAGs. H. Mt-III Z 4697,

fissures unrelated with the bone histology, cutting the compact cortex and filled with asphalt-impregnated clastic material. I. Radius LACMHC 6154,

development of “craquelure texture” associated to areas with development of enlarged canaliculi and central radial and circumferential microcracks. J.

Detail of the affected area. K. Humerus LACMHC 25297, cross-section of the sample showing the filling of different types of cavities with asphalt-

impregnates clastic material. L. Detail of the filling in medullary and microstructural cavities and fissures.

https://doi.org/10.1371/journal.pone.0261915.g007
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vascular pattern, coinciding, in general terms, with the descriptions of other equids, both

extant [18, 25, 55–60] and extinct [18, 26–28, 57, 61, 62]. The overall presence of this type of

tissue suggests that this species has, during early stages of the growth, a relatively fast rate of

bone deposition. Cuijpers and Lauwerier [63] indicated that both horses and cattle grow rela-

tively fast (in comparison with humans) due they have to be fully grown at 3–4 years. Varia-

tions recorded among specimens could be related to specific growth rate, size, growth

dynamics, or the biomechanical factors, according to particular characteristics of each skeletal

element and each individual (see [58, 59, 64]).

Mt-III (Z 4697 and Z 4657) and Mc-III (LACMHC 26263 and LACMHC 26267) have a

layer of compacted coarse cancellous bone. This secondary tissue is linked to the modeling

(i.e., remodeling sensu Enlow [65]) processes generated by the longitudinal growth of the skel-

etal element and by compaction and drift of the medullary cavity during ontogeny [21, 66]. Its

presence in all analyzed metapodials would be linked to the fact that, according to the portion

preserved in each specimen, the cuts could not be made exactly in the mid-diaphysis. This

finding provides new information on this type of tissue, since it was recently reported for the

first time in extinct equids, specifically in Hipparion specimens [27].

The EFS was registered only in two Mt-III (Z 4697 and Z 4657) and one Mc-III (LACMHC

26263) (Table 2). In all cases it appears after the deposition of the last LAG of the fibrolamellar

layer (see below, Skeletochronology). This cortex evidences the end/decrease of periosteal

bone growth [27], although the interpretation of its origin is controversial. Some authors con-

sider that its presence in mammals reflects the attainment of sexual maturity (e.g., [20, 58, 62,

67, 68]), while others propose a relationship with the attainment of skeletal/somatic maturity

(e.g., [26, 46, 61, 69–71]). Particularly for equids, it was mentioned that the timing of deposi-

tion of this tissue in the femur is causally correlate with the age of the first reproduction [58,

68], while the meaning in other skeletal elements is still poorly know ([62]; but see [26]). In

our case, no interpretations are made of the absence/presence of this tissue until a larger num-

ber of samples of different skeletal elements and a diversity of ontogenetic stages are available.

Secondary remodeling signs (i.e., secondary osteons and resorption cavities) were identified

in all specimens, although with differences in the location of the affected areas and the inten-

sity, which would suggest that the development of this process is particular for each skeletal

element (see [26]). In this sense, it was observed that a same skeletal element (i.e., humerus,

Mt-III, Mc-III) showed similar features in different specimens. In all samples, it was noted that

the relative density of secondary osteons varies according to the location, registering areas

with higher concentrations (even with the development of Haversian tissue) and areas where

they were scarce and scattered. The remodeling pattern observed in each type of skeletal ele-

ment is, in general lines, similar to that described in other works for limb bones of both extant

(e.g., [18, 25, 56–59]) and extinct (e.g., [18, 26, 27, 55, 57, 61]) equids.

This remodeling process would be associated to changes occurred during ontogeny (i.e.,

remodeling intensity increase with age) and to biomechanical factors (see [26, 58]). The varia-

tions observed in the same sample would indicate that some areas are subjected to compres-

sion loads (increase of secondary osteon density) while in others the tension strains are

predominant (decrease of secondary osteon density) [26, 56, 57, 59].

Skeletochronology

Skeletochronological studies, based on the presence of cyclical growth marks, help to under-

stand different life history traits of the species, such as longevity, age at maturity, and growth

strategy, among others (e.g., [46, 59, 67]). Cyclical growth marks identified in the skeletal ele-

ments of E. occidentalis correspond to LAGs, which represent cyclical growth marks that

PLOS ONE Osteohistology and histotaphonomy of the Pleistocene horse Equus occidentalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0261915 December 28, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0261915


evidence moments of cessation of growth [19, 21]. Taking into account that LAGs register

annual cycles of growth (e.g., [24, 44] and references therein), we estimate here the minimum

age of the individuals at the death time based on the number of marks identified in each sam-

ple. It should be noted that, in some cases, secondary remodeling can obscures the presence of

growth marks and, therefore, the counting may be underestimated [46].

Studies performed in extant and extinct equids suggest that femora and metapodials are

valuable skeletal elements for skeletochronological analysis (see [25, 26, 58, 59, 62]). We identi-

fied LAGs in six specimens (from a total of eight), including two humeri, two Mc-III, and two

Mt-III (Table 2). The higher number of LAGs identified was 3, in both Mc-III.

No LAGs were observed in the radius (LACMHC 6154) and femur (LACMHC 27421). The

absence in the first one could be related to the ontogeny, since the histological features (i.e.,

incipient formation of primary osteons, presence of vascular canals open towards the sub-peri-

osteal margin, sub-periosteal margin with irregular contour, low remodeling) reflect a juvenile

stage. The second one has histological features (i.e., absence of vascular canals opens towards

the sub-periosteal margin, sub-periosteal margin with smooth contour, high remodeling) cor-

responding to a more advanced ontogenetic stage (subadult/adult), so the absence would be

the result of the remodeling process.

The number of identified LAGs varied according to the skeletal element, registering was

one (LACMHC 25346) and two (LACMHC 25297) in the humeri, two in the Mt-III (Z 4697

and Z 4657), and three in the Mc-III (LACMHC 226263 and LACMHC 26267). Interestingly,

both Mt-III and one Mc-III developed an EFS located after the deposition of the last (second

and third respectively) LAG; this record agrees with the descriptions made for metapodials of

other extinct equids (see [26, 61]). However, as it was mentioned, we do not discuss here the

significance of this tissue.

Taking into account the characteristics of the sample, the growth curve was not recon-

structed. The skeletal elements with more than two LAGs are represented by only two speci-

mens (Mc-III LACMHC 226263 and LACMHC 26267), which could not be sampled in the

same portion and, furthermore, one of them was partially incomplete. This situation makes it

difficult to interpret the results obtained.

Taphonomic history reconstruction

Several studies proposed an entrapment scenario to explain the origin of the mammal assem-

blages recovered in the different pits of the Rancho La Brea site, which involve both herbivores

and carnivores that exploited their carcasses (e.g., [10]). However, other possible taphonomic

histories should not be ruled out, since it is still necessary to deepen in the evaluation of diverse

processes and agents that may have affected the bone remains both before and after burial. In

this work, we provide new taphonomic information from a novel perspective (histotaphon-

omy), which is based on the analysis of the modifications that affected the microstructure of

the E. occidentalis bone remains.

From a macroscopic viewpoint, the taphonomic features identified in the remains here

studied (Table 3) coincide with information obtained in previous works using material from

different pits (see [2, 5, 14] and references therein). All specimens are completely impregnated

with asphalt, which results in a dark coloration; different authors (e.g., [72–74]), proposed that

the asphalt favored the excellent preservation of the materials from this site, practically in its

original state. Null and slight weathering degrees allow estimating a relatively short perma-

nence time in the surface of the specimens exposed to different atmospheric agents; according

to Spencer et al. [5], carcasses of the animal entrapped in the tars were, in a first moment, only

partially submerged. Based on entomological information, Holden et al. [9] suggested that
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carcasses could remain exposed in the surface of the pits for at least 17–20 weeks before being

fully submerged in the asphalt; however, we do not record insect trace damage in the speci-

mens analyzed. Null abrasion degree in all specimens reflects a short time of interaction

between bones and sedimentary particles or very low intensity of the process. Despite the pos-

sible development of water transport events of short duration in the area (i.e., flash floods;

[75]), Spencer et al. [5] mentioned that fluvial action was not significant in the formation of

the assemblage from the Pit 91 (but see [14]). The types of identified fractures indicate that the

specimens were affected by destructive processes in different stages of the taphonomic history,

both before and after burial.

From a microscopic viewpoint, diverse biotic and abiotic agents and processes may modify

and/or destroy the original histological features of bone remains during different stages of the

taphonomic history. These changes vary according to the particular characteristics of the pre-

servational contexts ([30–32, 54, 76] and references therein). We identified here diverse modi-

fications that slightly altered the microstructure of the bone remains. Differences recorded

among samples would be linked to the taphonomic history of each specimen and the condi-

tions of each pit.

Canaliculi enlargement was observed in three specimens of different pits, including a radius

and two Mt-III (Tables 1 and 3). This process affected both primary and secondary osteons, in

all cases located in the most external layers of the compact cortex. It has been linked with soil

corrosion by highly humid acidic substrate and/or biogenic corrosion by moss, algae, and

lichen (e.g., [30, 31, 77, 78]). Although there are no data on the dominant conditions in the

pits here analyzed, Kim and Crowley [79] recorded slightly acidic conditions for the asphalt-

permeated soil from Pit 91, which would support the interpretation of soil corrosion. On the

other hand, from the biological viewpoint, there is no additional evidence (i.e., alteration of

the outer surface of bone remains) in the bone remains considered in this study to propose

that the modifications are related to the acid fluids from elements of the vegetation that pene-

trated into the bone; additionally, previous taphonomic works do not either mention macro-

scopic alterations that can be linked to these agents. It probably took place during the early

diagenesis.

Microbial attack is one of the key dominant processes altering and destroying bone tissues

during the early stages after the death of the animal. They are driven by several factors, includ-

ing the death history of an animal, its decomposition trajectory, and the depositing environ-

ment itself [32, 80, 81]; however, it is a process that remains poorly understood for terrestrial

environments [82]. Some authors (e.g., [83, 84]) suggested that the different microbial alter-

ations of bone remains are, in all cases, the result of bacterial attack; however, we follow here

the traditional proposal that relates different types of modification with different agents (e.g.,

[30, 51]). In the samples studied, bioerosion traces that can be related to microbial attack are

scarce and little developed, which would have favored the excellent preservation (stage 5 of

Hedges et al. [29]) of the bone microstructure.

Recorded traces include microtunnels located in the most external layer of the compact cor-

tex (penetrating only a few microns). They were observed in three specimens of different pits,

including a radius, a Mc-III, and a Mt-III (Tables 1 and 3). The general aspect (i.e., shape, size,

crumbly texture, location) of these microtunnels relate them to “Wedl tunneling” (sensu [50])

and, therefore, suggest fungal attack as their probable origin (see [30, 31, 50, 85–89]). Particu-

larly, microtunnels with a zig-zag trajectory are similar to the traces produced by the fungal

genus Mucor, cultured on modern bones in laboratory (see [30, 31]). Colonization of bones by

fungi, and the consequent microstructure modification, occurs under favorable environmental

conditions (i.e., presence of oxygen and moisture) [51, 90, 91]; the alteration of the bones by

fungi may occur very quickly after death, in a matter of a few days (i.e., Mucor fungus; [90]). In
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this case, there is no additional evidence to determine with certainty the moment (biostrati-

nomic or fossildiagenetic stages) in which the alterations were originated. The absence of

crumbly texture in most of the specimens (except the Mc-III LACMHC 26263) suggests that,

in general, the intensity of the fungal attack was slight.

Studied specimens do not show evidence (e.g., hyper-mineralized zones -non-Wedl micro-

scopic focal destruction- containing networks of small pores and thin canals; [30, 32, 77, 80,

92] and references therein) that can be related to the attack of both indigenous and exogenous

bacteria. This point is particularly interesting since the bacterial attack is a very common pro-

cess recorded in archeological and paleontological bone remains, which occurs quickly after

death [51, 82]. Besides, it was indicated that, nowadays, bacteria inhabit the tar seeps of Rancho

La Brea and they seem to have an active participation in the decay of tissues [79].

Kim and Crowley [79] analyzed two pits (91 and 101) of the Rancho La Brea site and

observed simple microbial community structures, including diverse types of bacteria, with

some differences possibly due to the particular conditions (i.e., Pit 91 asphalt-permeated soil:

greater concentration of petroleum hydrocarbons, slightly acidic, and relatively low salinity

and metal content; Pit 101 water suspensions of asphalt-permeated soil: alkaline (pH 8.4), and

high concentration of salts and metals) of each pit. These authors suggested that this type of

extreme environmental context (i.e., lack of air and water, presence of highly recalcitrant car-

bon sources, and high concentrations of potentially toxic metals and chemicals) is highly selec-

tive, which require specialized adaptations and, therefore, limits the microbial development.

Brown et al. [12] made an actualistic experiment in an undisturbed tar seep, using bobcat

(Lynx rufus) carcasses, to determine the progress of microbial faunal changes and tissue decay

in this anaerobic environment. These authors demonstrated that carcasses submerged in the

asphalt are rapidly skeletonized (i.e., loss of all muscle tissue, tendons, and ligaments, leaving

only a viscous mat of hair and skin collagen remaining around the bones), after 2–3 months,

due to the activity different microbial communities, including bacteria. Differences in the

composition of the communities among pits and animal decay were identified, suggesting spe-

cializations on utilizing available resources (see also [93]). The succession patterns of the iden-

tified microbial communities would indicate that the microbes most involved in the

skeletonization of the carcasses are originated from the liquid surface tar.

In this context, it is worth asking: why do we not observe evidence of bacterial attack of the

bone tissue at microstructural level? The consideration of different factors, acting indepen-

dently or in combination, can help to understand and explain this situation: 1) the extreme

conditions of this type of environment limit the growth and diversity of bacteria (see [79]),

and may favor the development of specialized taxa (see [12]), in this case with a participation

possibly limited to the decay of soft tissues; 2) dismemberment or skeletonization shortly after

death, particularly due to the activity of predators and/or scavengers (including both carnivore

mammals and insects; see [5, 9]), prevents or reduces the putrefaction of the bones and, there-

fore, the bacterial attack; and 3) a quickly impregnation of the outer surface and infilling of the

microstructural cavities with asphalt would limit the invasion of bacteria inside the bone

through the vascular network. At the moment, however, it is not possible to provide more

information on this phenomenon, since there is little available information on the biology of

the bacteria communities that live in tar seeps and their participation in the tissue decay as

well as on the conditions of the tar seep during the late Pleistocene and the accumulation his-

tory of the bones.

The good preservation of bones due to the absence of bacterial attack may result in an

increased source of nutrients for the saprophytic fungi of the soil (i.e., Mucor, see [30, 31, 51,

77, 90, 91]). Although some of the analyzed specimens have traces assignable to fungal activity,
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the available evidence does not allow confirming if fungi used the bones for feeding or merely

as a substrate.

Microcracking affecting bone histology provides information on the accumulation and

burial environment (e.g., [52–54, 94–97]). The sample studied includes specimens from differ-

ent pits (Tables 1 and 3) with two patterns of microcracking that affect the secondary osteons.

In both cases, microcracks were produced during the early diagenesis.

Radial microcracks that appear on the outer borders of the osteons and connect them with

adjacent osteons are originated in skeletal elements fossilized under water [52, 53, 94]. Central

radial microcracks that extend outwards from the walls of the Haversian canals indicate desic-

cation of the skeletal elements that were fossilized under dry, terrestrial conditions [54]. Asso-

ciated with these last microcracks, we identified in all the specimens circumferential

microcracks located in the peripheral zone and following the mineralized cement line, which

indicate buildup of shrinkage stress due the water loss continuity; the absence of peripheral

radial microcracks associated with the circumferential ones suggests that the desiccation inter-

vals were relatively shorts and, therefore, the shrinkage did not continue (see [54]). The varia-

tions recorded in the type and intensity of microcracking reflect clear differences in the

preservation conditions among pits.

Some specimens show circumferential fissures following debility zones of the bone

microstructure, such as resorption line and LAGs (see also [26]), both in the ICL and the

external layer (Table 3). These fissures were probably also formed during the early diagen-

esis. Finally, there are other fissures that are independent of bone histology (Table 3);

some of them are probably related to weathering and originated during the pre-burial

stage, while others affect secondary osteons with microcracks and were formed after the

early diagenesis.

Asphalt-impregnated clastic material fills, in all specimens, the medullary and microstruc-

tural cavities and the fissures that cut the compact cortex (Table 3). According to the evidence,

the filling process appears to have affected bone remains in different stages (pre- and post-

burial) of the taphonomic history. It is possible to propose that the permineralization with this

asphalt-impregnated clastic material could explain the good preservation of the bone micro-

structure of the specimens from this site.

Conclusions

We present here the first comprehensive osteohistological and histotaphonomic study per-

formed in bone remains from different pits of the emblematic Quaternary fossiliferous locality

of Rancho La Brea. It provides, from a different perspective, preliminary novel information to

know different life history aspects of Equus occidentalis, one of the most abundant taxa in this

site, and to better understand the origin and taphonomic histories of the vertebrate assem-

blages preserved in this particular terrestrial preservational context.

From a paleobiological viewpoint, we characterize and interpret the bone microstructure of

different skeletal elements. Even when all the specimens of the studied sample were broken,

this osteohistological analysis provides relevant information on E. occidentalis and allows to

make detailed comparison with other extant and extinct equids. The overall presence of fibro-

lamellar tissue reflects a relatively fast rate of bone deposition during the early stages of the

growth. The EFS identified shows end/decrease of periosteal bone growth in different

moments of the ontogeny according to the skeletal element. In general lines, the identified fea-

tures coincide with those mentioned for other extant and extinct equids. Secondary remodel-

ing is present in all skeletal elements, but with particular differences in intensity and location.

Cyclical growth marks (represented by LAGs in this case) allowed us to propose preliminary
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skeletochronological interpretations, mainly related to the minimum age at the moment of

death of the studied specimens.

From a taphonomic viewpoint, we describe diverse agents and processes not previously

mentioned for the remains of this site, which affected the original bone microstructure during

pre- and post-burial stages. It is important to highlight that this analysis includes some pits not

considered in previous taphonomic studies. The obtained results reflect differences among

pits, suggesting variations in the environmental conditions and taphonomic histories. Differ-

ences are even recorded among specimens from a same pit; however, the size of the studied

sample makes it difficult to raise interpretations respect to these variations. All the specimens

show slight modifications, which favored the excellent preservation of the bone microstruc-

ture; this aspect is concordant with the macroscopic features of the remains and endorses the

consideration of Rancho La Brea as a lagerstätte.
Considering the problems that arose during the elaboration of the thin sections due to the

asphalt present in the bone remains, filling both cavities and fissures, we had to propose modi-

fications to the traditional techniques. This new methodological variant is optimal to work

with vertebrate fossils preserved in tar seeps, since it allows making complete thin sections

without altering the original features of the bone microstructure.

Supporting information

S1 Fig. Schematic diagram of the different skeletal elements studied showing the position

in which the thin section was made.

(TIF)

S2 Fig. Main macrotaphonomic features observed in the specimens of the studied sample.

(A). Humerus LACMHC 25346, showing stage 0 of weathering and fossil-diagenetic fracture.

(B). Mc-III LACMHC 26263, showing stage 0 of weathering and biostratinomic fracture. (C).

Mt-III Z4697, showing stage 1 of weathering and fossil-diagenetic fracture. (D). Humerus

LACMHC 25297, showing stage 1 of weathering and fossil-diagenetic fracture. Note that all

the specimens show black color related to the impregnation with asphalt. The specimens do

not show abrasion evidence.

(TIF)
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19. Francillon-Vieillot H, Buffrenil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, et al. Microstructure and

mineralization of vertebrate skeletal tissues, in: Carter JG, editors. Skeletal biomineralization: patterns,

processes and evolutionary trends. New York: Van Nostrand Reinhold. 1990. p. 471–530.

20. Klevezal GA. Recording structures of mammals. Determination of age and reconstruction of life history.

Rotterdam: A.A. Balkema. 1996. https://doi.org/10.1016/s0969-8043(96)00199-6 PMID: 9022192

21. Chinsamy-Turan A. The microstructure of dinosaur bone: deciphering biology with fine scale tech-

niques. Baltimore: Johns Hopkins University Press. 2005.

22. Chinsamy-Turan A. Forerunners of mammals: radiation, histology, biology. Bloomington: Indiana Uni-

versity Press. 2012.

23. Padian K, Lamm ET. Bone histology of fossil tetrapods. Advancing methods, analysis, and interpreta-

tion. Berkeley and Los Angeles: University of California Press. 2013.

24. Kolb C, Scheyer TM, Veitschegger K, Forasiepi AM, Amson E, Van der Geer AAE, et al. Mammalian

bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ. 2015; 3(e1358):

e1358. https://doi.org/10.7717/peerj.1358 PMID: 26528418

25. Stover SM, Pool RR, Martin B, Morgan JP. Histological features of the dorsal cortex of the third meta-

carpal bone mid-diaphysis during postnatal growth in thoroughbred horses. J Anat. 1992; 181:455–469.

PMID: 1304584

26. Martı́nez-Maza C, Alberdi MT, Nieto-Diaz M, Prado JL. Life-history traits of the Miocene Hipparion con-

cudense (Spain) inferred from bone histological structure. PLoS One. 2014; 9(8):e103708. https://doi.

org/10.1371/journal.pone.0103708 PMID: 25098950

27. Nacarino-Meneses C, Chinsamy A, Mayda S, Kaya T, Erismis UC. Bone histology, palaeobiology, and

early diagenetic history of extinct equids from Turkey. Quat Res. 2021; 100:240–59. https://doi.org/

https%3A//doi.org/10.1017/qua.2020.87

28. Nacarino-Meneses C, Chinsamy A. Mineralized-tissue histology reveals protracted life history in the Pli-

ocene three-toed horse from Langebaanweg (South Africa). Zool. J. Linn. Soc. 2021; zlab037. http://dx.

doi.org/10.1093/zoolinnean/zlab037

29. Hedges REM, Millard AR, Pike AWG. Measurements and relationships of diagenetic alteration of bone

from three archaeological sites. J. Archaeol. Sci. 1995; 22(2): 201–209. https://doi.org/10.1006/jasc.

1995.0022

30. Fernández-Jalvo Y, Andrews P, Pesquero MD, Smith C, Marı́n-Monfort D, Sánchez B, et al. Early bone

diagenesis in temperate environments. Part I: surface features and histology. Palaeogeogr. Palaeocli-

matol. Palaeoecol. 2010; 288(1–4): 62–81. https://doi.org/10.1016/j.palaeo.2009.12.016

31. Fernández-Jalvo Y, Andrews P. Atlas of taphonomic identifications. 1001 + images of fossil and recent

mammal bone modification. Vertebrate Paleobiology and Paleoantropology Series. Dordrecht:

Springer. 2016.

32. Pesquero MD, Bell LS, Fernández-Jalvo Y. Skeletal modification by microorganisms and their environ-

ments. Hist. Biol. 2017; 30(6): 882–893. https://doi.org/10.1080/08912963.2017.1371713

PLOS ONE Osteohistology and histotaphonomy of the Pleistocene horse Equus occidentalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0261915 December 28, 2021 21 / 24

https://doi.org/10.1038/s41598-020-61996-y
http://www.ncbi.nlm.nih.gov/pubmed/32193515
https://doi.org/10.2110/palo.2016.074
https://doi.org/http%3A//dx.doi.org/10.1130/abs/2019am-338840
https://doi.org/10.1038/35086500
http://www.ncbi.nlm.nih.gov/pubmed/11473307
https://doi.org/10.1016/j.crpv.2011.02.003
https://doi.org/10.1016/s0969-8043%2896%2900199-6
http://www.ncbi.nlm.nih.gov/pubmed/9022192
https://doi.org/10.7717/peerj.1358
http://www.ncbi.nlm.nih.gov/pubmed/26528418
http://www.ncbi.nlm.nih.gov/pubmed/1304584
https://doi.org/10.1371/journal.pone.0103708
https://doi.org/10.1371/journal.pone.0103708
http://www.ncbi.nlm.nih.gov/pubmed/25098950
https://doi.org/https%3A//doi.org/10.1017/qua.2020.87
https://doi.org/https%3A//doi.org/10.1017/qua.2020.87
http://dx.doi.org/10.1093/zoolinnean/zlab037
http://dx.doi.org/10.1093/zoolinnean/zlab037
https://doi.org/10.1006/jasc.1995.0022
https://doi.org/10.1006/jasc.1995.0022
https://doi.org/10.1016/j.palaeo.2009.12.016
https://doi.org/10.1080/08912963.2017.1371713
https://doi.org/10.1371/journal.pone.0261915


33. Bell LS. Histotaphonomy, in: Crowder C and Stout S, editors. Bone histology: an anthropological per-

spective. CRC Press, Boca Raton. 2012. p. 241–254.

34. Leidy J. Bones and teeth of horses from California and Oregon. Proc. Acad. Nat. Sci. Philadelphia.

1865. 17(2):1–94.

35. Stock C. Significance of abraded and weathered mammalian remains from Rancho La Brea. Bulletin of

the Southern California Academy of Sciences. 1929; 28:1–5.

36. Feranec RS, Hadly EA, Paytan A. Stable isotopes reveal seasonal competition for resources between

late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeo-

geogr Palaeoclimatol Palaeoecol. 2009; 271(1–2):153–60. https://doi.org/10.1016/j.palaeo.2008.10.

005

37. Fuller BT, Harris JM, Farrell AB, Takeuchi G, Southon JR. Sample preparation for radiocarbon dating

and isotopic analysis of bone from Rancho La Brea, Los Angeles, California. La Brea and beyond: The

paleontology of asphalt-preserved biotas, ed. Harris JM. Natural History Museum of Los Angeles

County, Science Series. 2015; 42:151–167.

38. Cerda I, Pereyra M, Garrone M, Ponce D, Navarro T, González R, et al. A basic guide for sampling and
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44. Köhler M, Marı́n-Moratalla N, Jordana X, Aanes R. Seasonal bone growth and physiology in endo-

therms shed light on dinosaur physiology. Nature. 2012; 487(7407):358–61. https://doi.org/10.1038/

nature11264 PMID: 22763443

45. Huttenlocker AK, Woodward HN, Hall BK. The biology of bone, in: Padian K, Lamm ETeditors. Bone

histology of fossil tetrapods. Advancing methods, analysis, and interpretation. Berkeley: University of

California Press. 2013. p. 13–34. https://doi.org/10.1073/pnas.1302323110 PMID: 23630295

46. Woodward HN, Padian K, Lee AH. Skeletochronology. In: Padian K, Lamm ET, editors. Berkeley: Uni-

versity of California Press; 2013. p. 195–2015.

47. Behrensmeyer AK. Taphonomic and ecologic information from bone weathering. Paleobiology. 1978; 4

(2):150–62. https://doi.org/10.1017/s0094837300005820
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60. Nacarino-Meneses C, Köhler M. Limb bone histology records birth in mammals. PLoS One. 2018; 13

(6):e0198511. https://doi.org/10.1371/journal.pone.0198511 PMID: 29924818

61. Orlandi-Oliveras G, Nacarino-Meneses C, Koufos GD, Köhler M. Bone histology provides insights into
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